Oscillatory synchrony and human visual cognition.

نویسنده

  • Catherine Tallon-Baudry
چکیده

Oscillatory synchrony could be used to establish dynamic links between the various cortical areas participating in the same cognitive process. Is it possible to detect oscillatory synchrony in humans, and is it relevant to behavior? There is now converging evidence for the existence of a transient oscillatory activity in the gamma range (30-60 Hz), obtained in response to static visual objects, and having only a loose temporal relationship to stimulus onset. This so-called "induced" gamma response is much larger in response to coherent static or moving objects. However, functional variations of gamma and/or beta (15-20 Hz) oscillations are not restricted to perceptive, bottom-up mechanisms, but are also observed during visual imagery or short-term memory maintenance. Oscillations at the scalp level thus seem to reflect large-scale neural cooperativity in a variety of task-dependent networks. Human intra-cranial recordings in a short-term memory paradigm further reveal the existence and the task-dependency of oscillatory synchrony in the beta range, between focal sites separated by several centimeters and with a few milliseconds time-lag. These findings thus confirm experimentally the hypothesis of a functional role of synchronized oscillatory activity in the coordination of distributed neural activity in humans, and support Hebb's concept of short-term memory maintenance by reentrant activity within the activated network. In addition, the intra-cranial data obtained in humans and monkeys also help to better understand the neural mechanisms generating scalp-recorded oscillations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The roles of gamma-band oscillatory synchrony in human visual cognition.

Oscillatory synchrony in the gamma (30-120 Hz) range has initially been related both theoretically and experimentally to visual grouping. Its functional role in human visual cognition turns out to be much broader, especially when attention, memory or awareness are concerned. Induced gamma oscillations are thus not related to a single cognitive function, and are probably better understood in ter...

متن کامل

Visual Grouping and the Focusing of Attention Induce Gamma-band Oscillations at Different Frequencies in Human Magnetoencephalogram Signals

Neural oscillatory synchrony could implement grouping processes, act as an attentional filter, or foster the storage of information in short-term memory. Do these findings indicate that oscillatory synchrony is an unspecific epiphenomenon occurring in any demanding task, or that oscillatory synchrony is a fundamental mechanism involved whenever neural cooperation is requested? If the latter hyp...

متن کامل

Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task.

Oscillatory synchrony has been proposed to dynamically coordinate distributed neural ensembles, but whether this mechanism is effectively used in neural processing remains controversial. We trained two monkeys to perform a delayed matching-to-sample task using new visual shapes at each trial. Measures of population-activity patterns (cortical field potentials) were obtained from a chronically i...

متن کامل

Oscillatory synchrony as a mechanism of attentional processing.

The question of how the brain selects which stimuli in our visual field will be given priority to enter into perception, to guide our actions and to form our memories has been a matter of intense research in studies of visual attention. Work in humans and animal models has revealed an extended network of areas involved in the control and maintenance of attention. For many years, imaging studies...

متن کامل

Positive and Negative Symptoms in Schizophrenia Relate to Distinct Oscillatory Signatures of Sensory Gating

Oscillatory activity in neural populations and temporal synchronization within these populations are important mechanisms contributing to perception and cognition. In schizophrenia, perception and cognition are impaired. Aberrant gating of irrelevant sensory information, which has been related to altered oscillatory neural activity, presumably contributes to these impairments. However, the link...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of physiology, Paris

دوره 97 2-3  شماره 

صفحات  -

تاریخ انتشار 2003